Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cells ; 10(6)2021 06 17.
Article in English | MEDLINE | ID: covidwho-1369745

ABSTRACT

Hypertension is associated with gut bacterial dysbiosis and gut pathology in animal models and people. Butyrate-producing gut bacteria are decreased in hypertension. RNA-seq analysis of gut colonic organoids prepared from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats was used to test the hypothesis that impaired interactions between the gut microbiome and gut epithelium are involved and that these would be remediated with butyrate supplementation. Gene expressions in immune responses including antigen presentation and antiviral pathways were decreased in the gut epithelium of the SHR in organoids and confirmed in vivo; these deficits were corrected by butyrate supplementation. Deficits in gene expression driving epithelial proliferation and differentiation were also observed in SHR. These findings highlight the importance of aligned interactions of the gut microbiome and gut immune responses to blood pressure homeostasis.


Subject(s)
Colon/microbiology , Dysbiosis , Gastrointestinal Microbiome/physiology , Hypertension/microbiology , Animals , Butyrates/pharmacology , Colon/drug effects , Gastrointestinal Microbiome/drug effects , Male , Organoids , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Transcriptome
2.
Biochim Biophys Acta Mol Basis Dis ; 1867(3): 166037, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-966695

ABSTRACT

Hypertension is one of the most prevalent cardiovascular diseases worldwide. However, in the population of resistant hypertension, blood pressure is difficult to control effectively. Moreover, antihypertensive drugs may have adverse effect currently. Hence, new therapeutic targets and treatments are needed to uncovered and exploited to control hypertension and its comorbidities. In the past, classical drug targets, such as the aldosterone receptor, aldosterone synthase, and ACE2/angiotensin 1-7/Mas receptor axis, have been investigated. Recently, vaccines and drugs targeting the gastrointestinal microbiome, which represent drug classes, have also been investigated for the management of blood pressure. In this review, we summarized current knowledge on classical and new drug targets and discussed the potential utility of new drugs in the treatment of hypertension.


Subject(s)
Antihypertensive Agents/pharmacology , Drug Discovery , Hypertension/drug therapy , Molecular Targeted Therapy , Animals , Antihypertensive Agents/therapeutic use , Drug Development , Gastrointestinal Microbiome/drug effects , Humans , Hypertension/metabolism , Hypertension/microbiology , Hypertension/physiopathology , Renin-Angiotensin System/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL